Converting Hexadecimal to Octal

This method will work on either soroban or suan pan. Because calculations will be done in octal, I recommend using the abacus in octal mode; that is, let the heaven bead count four and only use three earth beads - this way bead manipulation will be the same as in decimal arithmetic and you only need to remember to use eight's complements instead of ten's complements. Otherwise you will need to use an octal addition table to perform the computations.

The method used is:

1. Clear several rods to zero to be used as an accumulator for the conversion, and select a units rod
2. Add to the units rod, using octal arithmetic, the most significant digit of the hexadecimal number
3. Multiply each digit of the accumulator by 16 (20 in octal), working from left to right, by adding the octal double of the digit to its left neighbor rod, and clear the original rod to zero
4. Add to the units rod, using octal arithmetic, the next most significant digit of the hexadecimal number
5. If the number added in step 4 was not the last digit of the hexadecimal number, go to step 3 6. Else stop

Example: hexadecimal 29C \rightarrow octal 1234
0000 clear the accumulator (the rightmost rod is selected as the units rod)
0002 add the most significant digit of the hexadecimal number to the units rod multiply 2 by 16 (octal 20) - double 2 and add it to the left neighbor rod, then clear the 2 add the next hexadecimal digit, 9 (11 in octal), to the units rod (and the rod to its left) multiply 5 by octal 20 - double 5 (10 decimal $=12$ octal) and add it to the left neighbor rod, then clear the 5
multiply 1 by octal 20 - double $1=2$ and add it to the left neighbor rod, then clear the 1 add the last hexadecimal digit, C (= 14 in octal), to the units rod

Another example: hexadecimal B7D6 \rightarrow octal 133726
000000 clear the accumulator (the rightmost rod is selected as the units rod)

000013
000203
000260
000267
004067
005407

005560

005575
120575
132075

133720
add (octal) the most significant digit of the hexadecimal number to the units rod
multiply 1 by octal 20 - double 1 and add it to the left neighbor rod, then clear the 1 multiply 3 by octal 20 - double 3 and add it to the left neighbor rod, then clear the 3 add the next hexadecimal digit, 7 , to the units rod
multiply 2 by octal 20 - double 2 and add it to the left neighbor rod, then clear the 2
multiply 6 by octal 20 - double 6 (= octal 14) and add it to the left neighbor rod, then clear the 6
multiply 7 by octal 20 - double 7 (= octal 16) and add it to the left neighbor rod, then clear the 7
add the next hexadecimal digit, $D(=15$ octal), to the units rod
multiply 5 by octal 20 - double 5 and add it to the left neighbor rod, then clear the 5 multiply 5 by octal 20 - double 5 and add it to the left neighbor rod, then clear the 5 multiply 7 by octal 20 - double 7 and add it to the left neighbor rod, then clear the 7 multiply 5 by octal 20 - double 5 and add it to the left neighbor rod, then clear the 5

Converting Octal to Hexadecimal

This method is best used on the suan pan where numbers up to 15 (hexadecimal F) can be placed on a rod. If you are using a soroban you will need to use some means of placing numbers greater than nine on a rod; for examle, by using a coin or other small obect placed just above the rod to represent a count of 10 added to the number shown on that rod's beads. All calculations will be done in hexadecimal, so a hexadecimal addition table may be used, or alternatively mentally perform the addition in decimal and then convert to hexadecimal.

The method used is:

1. Clear several rods to zero to be used as an accumulator for the conversion, and select a units rod
2. Add to the units rod, using octal arithmetic, the most significant digit of the hexadecimal number
3. Multiply each digit of the accumulator by 8, working from left to right, by adding half of the digit (if the digit is even) or half of the digit minus one (if the digit is odd) to the left neighbor rod. If the original digit was even the original digit is then cleared. If the original digit was odd replace it with eight
4. Add to the units rod, using hexadecimal arithmetic, the next most significant digit of the octal number
5. If the number added in step 4 was not the last digit of the octal number, go to step 3
6. Else stop

Example: octal $1234 \rightarrow$ hexadecimal 29C
0000 clear the accumulator (the rightmost rod is selected as the units rod)
0001 add the most significant digit of the octal number to the units rod multiply 1 by $8-1$ is odd, so add (1-1)/2 $=0$ to the left neighbor rod, then replace the 1 by 8 add the next octal digit, 2, to the units rod multiply 3 by $8-3$ is odd, so add (3-1)/2=1 to the left neighbor rod, then replace the 3 by 8 add the last octal digit, 4, to the units rod
stop
multiply A by $8-A$ is even so add $A / 2=5$ to the left neighbor rod, then clear the A
add the next octal digit, 3, to the units rod
multiply 5 by $8-5$ is odd, so add $(5-1) / 2=2$ to the left neighbor rod, then replace the 5 by 8

Another example: octal $133726 \rightarrow$ hexadecimal B7D6
00000 clear the accumulator (the rightmost rod is selected as the units rod)
add the most significant digit of the octal number to the units rod add the next octal digit, 3, to the units rod add the next octal digit, 3, to the units rod
multiply B by $8-B$ is odd, so add $(B-1) / 2=5$ to the left neighbor rod, then replace the B by 8 add the next octal digit, 7, to the units rod
multiply 2 by 8 - 2 is even, so add $2 / 2=1$ to the left neighbor rod, then clear the 2
multiply D by 8 - D is odd, so add (D-1)/2 $=6$ to the left neighbor rod, then replace D by 8 multiply F by 8 - F is odd, so add $(F-1) / 2=7$ to the left neighbor rod, then replace the F by 8 add the next octal digit, 2 , to the units rod
multiply 1 by 8 - 1 is odd, so add (1-1)/2 $=0$ to the left neighbor rod, then replace the 1 by 8 multiply 6 by $8-6$ is even, so add $6 / 2=3$ to the left neighbor rod, then clear the 6 multiply F by $8-F$ is odd, so add $(F-1) / 2=7$ to the left neighbor rod, then replace the F by 8 multiply A by $8-A$ is even, so add $A / 2=5$ to the left neighbor rod, then clear the A add the last octal digit, 6, to the units rod

Converting a Hexadecimal Fraction to an Octal Fraction

This method uses hexadecimal arithmetic.

1. Select a units rod and set the hexadecimal fraction onto the rods to the right of the unit rod
2. Multiply each digit of the hexadecimal fraction by 8 , working from left to right, by adding half of the digit (if the digit is even) or half of the digit minus one (if the digit is odd) to the left neighbor rod. If the original digit was even the original digit is then cleared. If the original digit was odd replace it with eight
3. Take the overflow which has spilled over onto the units rod as the next most significant digit of the octal fraction, then clear the units rod
4. If there are remaining non-zero digits in the hexadecimal fraction, go to step 2
5. Else stop

Example: hexadecimal 0.B7D6 \rightarrow octal 0.557530
0.B7D6 set the hexadecimal fraction onto the rods to the right of the units rod
5.87D6 multiply B by $8-B$ is odd so add $(B-1) / 2=5$ to the left neighbor rod and replace B with 8
5.B8D6 multiply 7 by $8-7$ is odd so add (7-1)/2 $=3$ to the left neighbor rod and replace 7 with 8
5. BE86 multiply D by $8-D$ is odd so add $(D-1) / 2=6$ to the left neighbor rod and replace D with 8
5. BEB0 multiply 6 by $8-6$ is even, so add $6 / 2=3$ to the left neighbor rod and clear 6 to 0
0.BEB0 the overflow, 5, is the first digit of the octal fraction (0.50000 so far) - clear the overflow
5.8EB0 multiply B by $8-B$ is odd so add $(B-1) / 2=5$ to the left neighbor rod and replace B with 8
5.F0B0 multiply E by 8 - E is even, so add $\mathrm{E} / 2=7$ to the left neighbor rod and clear E to 0
5.F580 multiply B by $8-B$ is odd so add $(B-1) / 2=5$ to the left neighbor rod and replace B with 8
0.F580 the overflow, 5, is the next digit of the octal fraction (0.55000 so far) - clear the overflow
7.8580 multiply F by $8-F$ is odd so add $(F-1) / 2=7$ to the left neighbor rod and replace F with 8
7.A880 multiply 5 by $8-5$ is odd so add (5-1)/2 $=2$ to the left neighbor rod and replace 5 with 8
7. AC00 multiply 8 by $8-8$ is even, so add $8 / 2=4$ to the left neighbor rod and clear 8 to 0
0.AC00 the overflow, 7 , is the next digit of the octal fraction (0.55700 so far) - clear the overflow
5.0C00 multiply A by $8-A$ is even, so add $A / 2=5$ to the left neighbor rod and clear A to 0
5.6000 multiply C by $8-C$ is even, so add $C / 2=6$ to the left neighbor rod and clear C to 0
0.6000 the overflow, 5, is the next digit of the octal fraction (0.55750 so far) - clear the overflow
3.0000 multiply 6 by $8-6$ is even, so add $6 / 2=3$ to the left neighbor rod and clear 6 to 0
0.0000 the overflow, 3, is the next digit of the octal fraction (0.55753 so far) - clear the overflow stop - all hexadecimal digits are zero

Converting an Octal Fraction to a Hexadecimal Fraction

This method uses octal arithmetic.

1. Select a units rod and set the octal fraction onto the rods to the right of the unit rod
2. Multiply each digit of the octal fraction by 16 (octal 20), working from left to right, by adding
the octal double of the digit to the left neighbor rod and then clear the original rod
3. Take the overflow which has spilled over onto the units rod (and possibly also onto the left
neighbor of the units rod) as a one or two digit octal number which must be mentally converted
to a single hexadecimal digit which will be the next most significant digit of the hexadecimal
fraction, then clear the units rod (and its left neighbor)
4. If there are remaining non-zero digits in the octal fraction, go to step 2
5. Else stop

Example: octal $0.55753 \rightarrow$ hexadecimal 0.B7D6
00. 55753 set the octal fraction onto the rods to the right of the units rod
12.05753 multiply 5 by octal 20 - double 5 ($=$ octal 12) and add it to its left neighbor rod, then clear the 5
13.20753
07.60260
multiply 6 by octal 20 - double 6 (= octal 14) and add it to its left neighbor rod, then clear the 6
clear the 5
15.30000 multiply 4 by octal 20 - double 4 (= octal 10) and add it to its left neighbor rod, then clear the 4
00.30000 the overflow, 15 (octal $15=$ hexadecimal D), is the next digit of the hexadecimal fraction (0.B7D0 so far) - clear the overflow
06.00000 multiply 3 by octal 20 - double 3 and add it to its left neighbor rod, then clear the 3
00.00000 the overflow, 6, is the next digit of the hexadecimal fraction (0.B7D6 so far) - clear the overflow
stop - all octal digits are zero

Steve Treadwell
November, 2014

