
Improvements to the Kato Method for Finding Square Roots

Revision and Rounding

Professor Fukutaro Kato's method for finding square roots is ideally 
suited for use on the abacus.   The method is clearly described here:
http://webhome.idirect.com/~totton/soroban/katoSq/

 However, as with most square root methods, it is sometimes necessary
to revise a root digit if our first estimate was too large or small. 
This can be particularly confusing for revising downward, because if 
our estimate was too large, at some point during the ensuing 
subtractions from the remainder, the remainder will become negative 
and it can be difficult to remember how much must be added back to 
each rod to revise.  I will show a straightforward way to revise both
upward and downward.  Another difficulty with every square root 
method that I'm aware of is that we are left with a remainder, but 
with no obvious way to know whether the root developed to that point 
needs to be rounded up except to do the calculations required to find
one more root digit and then round up if that root digit is greater 
than or equal to five.  I will describe an easier method to determine
if rounding up is needed.

Revision upward

Just after estimating a new root digit (except for the very first 
one) and performing the subtractions of the root digit products and 
one-half the square of the new root digit from the remainder, it may 
not be obvious if we have underestimated the root digit,especially if
the remainder is only a little larger than the root.  In the worst 
case, to check for undershoot after completing the subtractions, we 
might have to subtract all the root digits except for the last one 
from the remainder, add back half the square of the underestimated 
root digit, and then see if there is enough remainder left over to 
subtract half the square of the corrected root digit.

There is an easier way to check whether our estimate was too low.  
First, we complete all the subtractions pertaining to a root digit 
all the way through the subtraction of one half the square of that 
digit.  Then, if we have developed 'n' root digits including the one 
for which we just completed the subtractions, we simply compare the 
remainder, beginning at the first rod to the right of the newly 
developed root digit and comprising n+2 digits including leading 
zeros, to the n+1 digit number composed of the root with five 
appended to the right end placed with the most significant digit of 
the root at the second rod to the right of the newly developed root 
digit.  If the remainder is greater than or equal to the root with 

http://webhome.idirect.com/~totton/soroban/katoSq/


five appended, we subtract the root with five appended from the 
remainder and revise the root digit up by one.

             ____
Here's a very simple example:  \| 625  = 25

006250   set the problem 
202250   find the first digit of the root (2) and subtract its square

from 06
201125   halve the remainder 
240325   (under)estimate the next root digit as 4, subtract 2 x 4 = 8

from 11 
240245   subtract 42/2 = 08 from 32

Now we have completed the subtractions for the second root digit.  We
see that the four digit remainder 0245 is greater than or equal 
(equal in this case) to the three digit number composed of the root 
with 5 appended which for the purpose of the comparison is placed 
with the most significant digit at the second rod to the right of the
root, or in this case at the location of the two in the remainder 
0245.  Hence we can subtract the root with 5 appended and then 
increment the last root digit to 25.

250000   subtract 245 from 0245 and then increment the last root 
digit

Note that the Kato remainder is always half of the result of 
subtracting the square of the root from the radicand.  In this case, 
0245 or 24.5, is half of the remainder after subtracting the square 
of the root 242 = 576 from the radicand 625.

                                      ___
Here's a more complicated example:  \| 45  = 6.70820.....

0450000000000   set the problem 
6090000000000   find the first root digit, 6, and subtract its 

square, 36 from 45
6045000000000   halve the remainder 

6703000000000   45/6 = 7+, estimate the next root digit as 7, 
subtract 7x6 = 42 from 45 

6700550000000   subtract 72/2 = 24.5 from 30.0
 
The remainder, 0055, is less than 675 (the root with 5 appended) so 7
is the correct root digit 

6700550000000   05/6 is less than 1, so 0 will be the next root 
digit

The remainder, 05500, is less than 6705 (the root with 5 appended), 
so 0 is correct



6708550000000   55/6 = 9+, be cautious and estimate 8, not 9 
6708070000000   subtract 8x6 = 48 from 55 
6708014000000   subtract 8x7 = 56 from 70 
6708014000000   subtract 8x0 = 00 from 40 
6708013680000   subtract 82/2 = 32 from 1400

The remainder, 013680, is less than 67085 (the root with 5 appended),
so 8 is correct

6708113680000   13/6 = 2+, be cautious and estimate 1, not 2 
6708107680000   subtract 1x6 = 06 from 13 
6708106980000   subtract 1x7 = 07 from 76 
6708106980000   subtract 1x0 = 00 from 98 
6708106972000   subtract 1x8 = 08 from 80 
6708106971950   subtract 12/2 = 00.5 from 20.0
 
The remainder 0697195 is greater than 670815 (the root with 5 
appended), so subtract 670815 from 697195 and increment the root 
digit from 1 to 2

6708200263800   now the remainder 0026380 is less than 670825 so go 
on to the next root digit

If we had chosen 2 originally as the root digit, we would have had:

6708213680000   13/6 = 2+, estimate 2 for the root digit
6708201680000   subtract 2x6 = 12 from 13 
6708200280000   subtract 2x7 = 14 from 16 
6708200280000   subtract 2x0 = 00 from 28 
6708200264000   subtract 2x8 = 16 from 80 
6708200263800   subtract 22/2 = 02 from 40

which is exactly where we ended up after revising, so we have indeed 
revised correctly.

Why does this work?  Assume we have a number S, the square root of 
which is to be found, r is the root developed up to some point, and x
is half of the remainder after subtracting the square of that 
developed root from S (remember that the Kato method works with half 
the “true” remainder).  Now, for the sake of simplicity in the 
following, we assume that if necessary we have multiplied S by some 
even power of ten to make r an integer.  This does not affect the 
results as the decimal point can be restored to its original location
later.
So we have:



S = r2+2x, or
S-r2 = 2x, or
x = 1/2(S-r2)

It is apparent that if we have underestimated the root by one and  
subtracted (r-1)2 rather than r2 from S, our half-remainder would be: 
1/2[S-(r-1)2] = 1/2[r2+2x–(r-1)2] = 1/2[r2+2x-r2+2r-1] = x+r-1/2
that is, our half-remainder x would be too large by r-1/2.
 
If we then revise by subtracting from this (r-1)+1/2 = (r-1)+0.5 (the
underestimated root with 5 appended), we are left with a half-
remainder of x, which is exactly what we would have had if we had 
originally estimated the root correctly and subtracted r2 rather than
(r-1)2.

Revision downward

Revising down can be even more difficult than revising up because if 
we have overestimated the root digit the remainder will become 
negative at some point during our subtractions and we may not be 
easily able to recall how much we need to add back in order to return
to the starting point.  Instead of trying to reverse direction and 
begin revising before we have completed all the subtractions it seems
easier to complete the subtractions, allowing the remainder to become
negative, then revise the root digit downward by one and add the 
corrected root with five appended to the negative remainder, 
similarly to the way we subtracted the uncorrected root with five 
appended when we underestimated the root digit.
                     _____
Here's an example: \|3364   = 58

abcdef
033640 set the problem 
533640 the first root digit is 5 
508640 subtract the square of the first digit from 33 
504320 halve the remainder 
594320 overshoot the next digit, 9 instead of 8 
599820 subtract 45 from 43 (98 is the 10's complement of 02) 
599415 subtract 92/2 = 40.5 from 82 
589415 decrement the root digit to correct the overshoot
580000 add 585 to 415 (start at the second rod from the root) 

Notice that when we subtracted 45 from 43 on rods 'cd' we first 
subtracted four from four on rod 'c', leaving a remainder of 03 on 
rods 'cd', then when we subtracted five from three on rod 'd' we 
needed to borrow from the zero on rod 'c', requiring a borrow in turn
from rod 'b' which we can't do because rod 'b' is part of the root, 



not part of the remainder.  So we just assumed that we borrowed one 
from “somewhere” and then returned it when we added 585 to 415 
causing a carry into rod 'c', making it a zero and causing a carry 
into “somewhere” (because we can't carry into rod 'b' which is part 
of the root) thus replacing the earlier borrow.  Everything works out
in the end as long as  we remember not to borrow from or carry into 
the root.

                          ______
Here's another example: \|121801 = 349 

01218010  set the problem 
31218010  the first root digit = 3 
30318010  subtract the square of first root digit 
30159005  halve the remainder 
35159005  overshoot the second root digit, 5 instead of 4 
35009005  subtract 15 from 15 
35996505  subtract 125 from 090 - the remainder goes negative - 

 continue borrows leftward up to the most significant 
   digit of the remainder, but not into the root 

34996505  correct the overshoot by decrementing the last root digit 
34031005  and add 345 to 965 - continue carries leftward up to the 

 most significant digit of the remainder, but not into the 
 root 

34931005  the next root digit is 9 
34904005  subtract 27 from 31 
34900405  subtract 36 from 40 
34900000  subtract 405 from 405
 
finished:  the root is 349 

Why does it work?  As in the explanation of why the undershoot method
works, we again assume that if necessary we have multiplied S by an 
even power of ten so that r is an integer.  As before, if S  = r2+2x 
and we overestimate the root digit and subtract (r+1)2 instead of r2, 
our half-remainder would be:
1/2[S-(r+1)2] = 1/2[r2+2x – (r+1)2] = 1/2[r2+2x – r2-2r-1] = x-r-1/2.  
If we then revise by adding to this r+1/2 = r+0.5 (the corrected root
with 5 appended), we are left with a half-remainder of x, which is 
exactly what we would have had if we had originally estimated the 
root correctly and subtracted r2 rather than (r+1)2.

Rather than trying to remember that when we revise an undershoot we 
correct the remainder first, then correct the root, but when we 
revise an overshoot we correct the root first, then correct the 
remainder; it may be easier to remember this rule:  always append 
five to the smaller of the uncorrected or the corrected root.  This 
will be the underestimated root for an undershoot and the corrected 
root for an overshoot.  Following this rule, it doesn't matter 



whether the root or the remainder is corrected first.

Rounding

The instructions for any square root method will leave us with a 
remainder if the radicand is not a perfect square.  Usually we don't 
really care about the remainder, but what we really want to know is 
the root to a certain number of significant digits, say 'n' digits.  
If we find 'n' digits and the  'n+1'st digit is equal to or greater 
than five then we should increment the 'n' digit root.  Of course we 
can use the obvious method of calculating 'n+1' digits of the root 
and then rounding up the 'n'th digit or not.  But there is a much 
easier way; just compare the 'n+3' digit “true” remainder (double the
“Kato” remainder) beginning at the rod to the right of the 'n'th root
digit to the 'n' digit root with 25 appended to make an 'n+2' digit 
number.  If the true remainder is equal to or greater than the 'n' 
digit root with 25 appended, then increment the root.  We can make 
the comparison mentally just by looking at the remainder and the root
or we can simply begin subtracting the root (with 25 appended) from 
the remainder and see if the result becomes negative, in which case 
no rounding up is required.  If it doesn't become negative then we 
must round up.

           ______ 
Example: \|228520 = 478, remainder 36.
 
If we want 3 significant digits, should we round up to 479 ? 

When we finish with the three digit root, our abacus looks like this:

478001800
 
and after doubling the remainder, we have 
478003600

We can see at a glance that the remainder 003600 is less than 47825, 
so rounding up the root to 479 is not needed. 

Alternatively, we can just begin subtracting the root with 25 
appended, starting at the second digit to the right of the last root 
digit: 

478003600 
-   47825
---------
This result becomes negative immediately, so we know that rounding up
is not needed.



                        ___
Another example: Find \|976 = 31.24090.... to six significant digits:

After developing the root to 6 significant digits, the abacus looks 
like this: 

3124090308359500 

after doubling the remainder, we have 
3124090616719000 

To determine if we need need to round up to 31.2410, compare the 
remainder 061671900 to the root with 25 appended 31240925 or 
alternatively just subtract the root with '25' appended, starting at 
the second rod to the right of the last root digit and verify that 
the result is not negative: 

312409061671900
-      31240925
–--------------

Clearly the remainder is larger than the root with 25 appended, so in
this case, rounding up to 31.2410 is required.

Here's why this works:

Assume we have a number S and we want to find the square root of S to
'n' significant figures.  After we have found the root 'r' to 'n' 
digits, whether the next digit is greater than or equal to five will 
determine if we need to round up the 'n'th digit. (As in the 
explanations above, we assume that if necessary we had multiplied S 
by some even power of ten such that r is an integer.)  Now consider 
the case where S is such that the root is right on the dividing line 
between rounding up the 'n'th digit or not; that is, the 'n' digit 
root is 'r' and the next, or 'n+1'st digit is exactly five.    Then 
the 'n' digit root is r+0.5 and we have:

S = (r+0.5)2 = r2+r+0.25 or
S-r2 = r+0.25 

After finding r (the square root of S to 'n' digits) and doubling the
half-remainder to get the true remainder S-r2, we are left with a 
remainder of r+0.25.  In the general case where the root is not right
on the dividing line of being rounded up, if the remainder is less 
than r+0.25, the root must have been less than r+0.5 so we don't need
to round up.  On the other hand, if the remainder is greater than or 



equal to r+0.25, the root must have been greater than or equal to 
r+0.5, so we do need to round up the 'n'th digit.
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