Decimal/Hexadecimal Conversion

For these first two methods, you only need to know the multiples of fifteen from
one through nine:
- 15

- 30

- 45

- 60

75

- 90

- 105

- 120

- 135

OCoO~NOOTA~WNBE
1

Conversion of Hexadecimal Whole Numbers to Decimal

The method is to add a hexadecimal digit, starting with the most significant, to an
accumulated sum, then multiply the sum by 16, using decimal arithmetic, then repeat
the process until all the hexadecimal digits have been added into the sum. The sum
is not multiplied by sixteen after the least significant hexadecimal digit is
added. By using “multifactorial multiplication” we can multiply by fifteen rather
than sixteen, making the process easier. To multiply a number by N with
multifactorial multiplication you simply multiply it by N-1 and add the product to
the original number

Example: 7D3B — 32059

00000 clear some rods to hold the accumlated decimal number
+ 7 add the first hexadecimal digit

+ 105 multiply the digit by 15 and add it to the sum

+ 13 add the second hexadecimal digit (hex D = decimal 13)

+ 15 multiply 1 by 15 and add
+ 30 multiply 2 by 15 and add
+ 75 multiply 5 by 15 and add

2000

+ 3 add the third hexadecimal digit
2003

+ 30 multiply 2 by 15 and add

+ 45 multiply 3 by 15 and add

+ 11 add the fourth hexadecimal digit (hex B = decimal 11)

32059 done (no multiply after adding the least significant digit)

Conversion of Decimal Fractions to Hexadecimal Fractions

This method requires successively multiplying the decimal fraction by sixteen (or
by fifteen using multifactorial multiplication) and after each multiplication,
taking the “spillover” to the left of the decimal point as the next hexadecimal
digit of the hexadecimal fraction. Of course, spillover numbers larger than nine
must be converted to hexadecimal:

10 - A, 11 - B, 12 - C, 13 - D, 14 - E, 15 - F
Example: 0.6397 — 0.A3C36....

00.63970 enter the decimal fraction
9

+ 9.0 multiply 6 by 15 and add
+ 45 multiply 3 by 15 and add
+ 135 multiply 9 by 15 and add
+ 105 multiply 7 by 15 and add

10.23520 spillover is 10, so first hexadecimal digit is A; so far, 0.A

00.23520 clear spillover

+ 3.0 multiply 2 by 15 and add
+ 45 multiply 3 by 15 and add
+ 75 multiply 5 by 15 and add
+ 30 multiply 2 by 15 and add

03.76320 spillover is 3, so next hexadecimal digit is 3; so far, 0.A3

00.76320 clear spillover

+10.5 multiply 7 by 15 and add
+ 90 multiply 6 by 15 and add
+ 45 multiply 3 by 15 and add
+ 30 multiply 2 by 15 and add

12.21120 spillover is 12, so next hexadecimal digit is C; so far, 0.A3C

00.21120 clear spillover

+ 3.0 multiply 2 by 15 and add
+ 15 multiply 1 by 15 and add
+ 15 multiply 1 by 15 and add
+ 30 multiply 2 by 15 and add

03.37920 spillover is 3, next hexadecimal digit is 3; so far, ©0.A3C3

00.37920 clear spillover

+ 4.5 multiply 3 by 15 and add
+ 1.05 multiply 7 by 15 and add
+ 135 multiply 9 by 15 and add
+ 30 multiply 2 by 15 and add

06.06720 spillover is 6, next hexadecimal digit is 6; so far, ©.A3C36

and this can be continued as far as you like.

Conversion of Decimal Whole Numbers to Hexadecimal

To use a method similar to the above, you would need to use a suan pan and perform
the computations in hexadecimal. There is a simpler method which can be used on
the soroban as well as suan pan, in which the calculations are done in binary, then
converted to hexadecimal (http://webhome.idirect.com/~totton/soroban/Marcos/Decimal
%20t0%20Binary.htm). To use this method, you only need to know the binary codes
for the digits '@' through 'F':

00060
0001
0010
0011
0160
0101
0110
60111
1000
1001
1010
1011
1100
1101
1110
1111

TMTMOUOW>OO~NOUMMWNREO

Clear the abacus and choose a units rod near the right end. Enter the binary code
for the most significant decimal digit, then:

a) multiply the binary number by 'A' as follows: working from left to right, for
each binary bit which is a '1', set a '1' at the left neighbor rod and another '1'
two rods left of that, then clear the original bit.

b) add the binary code for the next most significant decimal digit

c) working from right to left, normalize the binary number by clearing each pair of
bits on a rod and setting a bit on its left neighbor rod. For example, if three
rods have 002, they will change to 010; 003 will change to 011; 012 will change to
020, then to 100. The object is to end up with only '0@' or '1' on every rod.

d) If the last digit added was the least significant digit, you are done, else go
to a)

Example: 32059 - 7D3B

0000 0000 0EOO 0000 clear rods (units rod on right)
0000 0000 0000 0011 enter binary code for 3

0000 0000 0001 0101 multiply leftmost 1 by A

0000 0000 00e1 1110 multiply rightmost 1 by A

0000 0000 0001 1120 add binary code for 2 (0010)
0000 0000 0010 OO normalize

0000 0001 0100 0000 multiply by A

http://webhome.idirect.com/~totton/soroban/Marcos/Decimal%20to%20Binary.htm
http://webhome.idirect.com/~totton/soroban/Marcos/Decimal%20to%20Binary.htm

0000 0001 0100 0000 add code for 0 (normalization not needed afterward)

0000 1020 1000 0000 multiply by A
0000 1020 1000 0101 add binary for 5 (0101)
0000 1100 1000 0101 normalize
0111 1101 0010 2010 multiply by A
0111 1101 0010 3011 add binary for 9 (1001)
0111 11601 66011 1611 normalize

7 D 3 B convert to hexadecimal

Here's a variation of the same method which uses a binary/octal code to represent
each hexadecimal digit, and like the previous method, works on a soroban as well as
suan pan. In this method, each hexadecimal digit occupies three rods: the leftmost
is always zero and just serves as a spacer between digits, the center one is a
binary rod with a zero if the hexadecimal digit is less than eight or one if it is
equal to or greater than eight, and the rightmost rod contains an octal code for
the hexadecimal digit's excess over zero or eight. On a soroban, it is convenient
to always place the rightmost (octal) rod of each digit on a marked units rod.

Hexadecimal digit binary rod octal rod
0] 0] 0]
1 0] 1
2 0] 2
3 0] 3
4 0] 4
5 0] 5
6 0] 6
7 0] 7
8 1 0
9 1 1
A 1 2
B 1 3
C 1 4
D 1 5
E 1 6
F 1 7

The octal rod should never contain a number larger than 7 (I prefer to count the
heaven bead as four rather than five and to only use three earth beads, to simplify
the addition). The binary rod will sometimes contain a number greater than one
temporarily, but will always be normalized back to either zero or one by clearing a
pair of beads on the binary rods and incrementing the octal rod of the left
neighbor hexadecimal digit.

This method requires the use of a table of hexadecimal multiples of nine (we will
be using multifactorial multiplication to effectively multiply by A by adding nine
times a digit to the digit).

Hexadecimal digit Binary/octal code digit x 9 Binary/octal code for x9

1 001 09 000 011
2 002 12 001 002
3 003 1B 001 013
4 004 24 002 004
5 005 2D 002 015
6 006 36 003 006
7 007 3F 003 017
8 010 48 004 010
9 011 51 005 001
A 012 5A 005 012
B 013 63 006 003
C 014 6C 006 014
D 015 75 007 005
E 016 7E 007 016
F 017 87 010 007

To rework the previous example by this method: 32059 - 7D3B

000 000 000 000 clear some rods for the hexadecimal digits
+ 003 add binary/octal code for 3
000 000 OO0 0063
+ 001 013 multiply 3 by 9 using table and add
000 000 001 016
+ 002 add binary/octal code for 2
000 000 001 020 octal addition for the octal rod - carry to the binary rod
000 000 002 000 normalize: two on the binary rod = 1 on the left neighbor
+ 001 002 000 multiply 2 by 9 using table and add
000 001 004 000
+ 000 add zero
000 001 004 000 normalization not required
+ 000 011 multiply 1 by 9 using table and add
+ 002 004 multiply 4 by 9 using table and add
000 014 010 000
+ 005 add binary/octal code for 5
000 014 010 005 normalization not required
+ 006 014 multiply C by 9 using table and add
+ 004 010 multiply 8 by 9 using table and add
+ 002 015 multiply 5 by 9 using table and add

+ 011 add binary/octal code for 9

007 015 003 013 normalize
7 D 3 B the hexadecimal equivalent

Conversion of Hexadecimal Fractions to Decimal Fractions

To avoid performing computations in hexadecimal, this method begins with the
hexadecimal fraction converted to binary, then involves successive multiplications
by 'A' (1010 in binary) as in a previously shown method, and after each
multiplication, taking the binary spillover left of the decimal point (converted to
decimal) as the next decimal digit of the decimal fraction. The spillover is then
cleared before the next multiplication.

Example: 0.A3C36 - 0.6397 approximately

0000.1010 0011 1100 0011 0110 convert the hexadecimal to binary
0102.0101 1221 1001 1121 11060 multiply by A

0110.0110 0101 1010 0001 1100 normalize - the first decimal digit is 6
0000.0110 0101 1010 0001 1100 clear the spillover

0011.1110 2112 0100 1121 1000 multiply by A

0011.1111 1000 0101 0001 1000 normalize - the next decimal digit is 3
0000.1111 1000 0101 0001 1000 clear the spillover

0112.2211 00160 2010 1111 00GO multiply by A

1001.1011 0011 0010 1111 060 normalize - the next decimal digit is 9
0000.1011 0011 60010 1111 0060 clear the spillover

0102.1111 1111 60212 2110 0000 multiply by A

0110.1111 1111 1101 0110 0060 normalize - the next decimal digit is 6
0000.1111 1111 1101 0110 OOEO clear the spillover

0112.2222 2221 2021 1100 0000 multiply by A

1001.1111 1110 0101 1100 0000 normalize - the next decimal digit is 9

so far, we have 0.63969 or approximately 0.6397

The previous use of a binary/octal code to represent the hexadecimal digits can
also be used to convert a hexadecimal fraction to a decimal fraction. This method
also works on the soroban and does not require hexadecimal addition.

To rework the previous example by this method: 0.A3C36 - 0.6397 approximately

000.012 003 014 003 006 convert the hexadecimal to binary/octal code
+ 005 012 multiply A by 9 using table and add
+ 0 0 1 0 13 " 3 " " " "
+ 0 0 6 0 14 1 C " 1 " “
+ O O 1 O 1 3 1" 3 " " 1" 1"
+ O O 3 O O 6 1" 6 " " 1" 1"
005.025 024 031 021 014
006.006 005 012 001 014 normalize - the first decimal digit is 6
000.006 005 012 001 014 clear the spillover
+ 003 006 multiply 6 by 9 using table and add
+ 0 0 2 0 15 " 5 " " " "
+ 0 0 5 0 12 1" A " " 1" 1°
+ O O O O 1 1 1" 1 " " 1" 1"
+ O O 6 O 14 1 C " 1 " “
003.016 027 024 020 030
003.017 010 005 001 010 normalize - the next decimal digit is 3
000.017 010 005 001 010 clear the spillover
+ 010 007 multiply F by 9 using table and add
+ 0 0 4 0 10 1" 8 " " 1" 1"
+ 0 0 2 0 15 1" 5 " " 1" 1°
+ 0 0 0 0 1 1 " 1 " " " "
+ O O 4 O 10 1 8 " 1 " “
010.032 022 022 016 020
011.013 003 002 017 000 normalize - the next decimal digit is 9
000.013 003 002 017 000 clear the spillover
+ 006 003 multiply B by 9 using table and add
+ 0 0 1 0 13 1" 3 " " 1" 1"
+ 0 0 1 0 0 2 H" 2 " " H" 1"
+ 0 1 0 0 0 7 " F " " " "
006.017 017 014 026 000
006.017 017 015 006 000 normalize - the next decimal digit is 6
000.017 017 015 006 000 clear the spillover
+ 010 007 multiply F by 9 using table and add
+ 0 10 0 0 7 1" F " " 1" "
+ 0 0 7 0 0 5 1" D 4" 4" 1" "
+ 0 0 3 0 0 6 H" 6 " " H" 1"

010.036 035 025 014 000
011.017 016 005 014 000 normalize, the next decimal digit is 9

So far, we have 0.63969 or approximately 0.6397 just as before.

Steve Treadwell
December, 2014

