Binary Multiplication and Division

Multiplication

Binary multiplication works just like decimal multiplication. Given two binary numbers, M with m
bits and N with n bits, set the most significant bit of M m+n rods to the left of your chosen units rod.
Then begin to add in the partial products just to the right of M with each product of two single bits
occupying two rods, just as the product of two base 10 digits occupies two rods

Example:
MxN=110x 110
mtn=3+3=6

Set N at the left side and set M beginning 6 rods left of the units rod

U U marks the units rod
110 000 001 100 000 000 000

N M (110)

multiply N by the 0 in M and add partial products, beginning just to the right
of M but setting aside two rods for each partial product, exactly as we do in
base 10
+ 00
+ 00
+ 00

110 000 001 100 000 000 000

N M (110)

clear the least significant bit in M (it is already 0)
110 000 001 100 000 000 000

N _1;/}(11)

multiply N by the middle bit of M and add partial products
+01
+01
+ 00

110 000 001 101 100 000 000

N _1;&(11)

clear the middle bit of M
110 000 001 001 100 000 000

N M (1)

multiply N by the most significant bit of M and add partial products
+01
+ 01
+00

110 000 001 100 100 000 000

N M)

clear the most significant bit of M
110 000 000 100 IOBJOOO 000

N

the product is 100 100 which is 36 in base 10.

Division

Binary division works the same as decimal division, except that there is no multiplication involved.
Instead, we either subtract 0 or subtract the divisor from the dividend depending on whether the
quotient bit was 0 or 1. In binary we can compute A-B by A+B/ where A and B are binary numbers and
B/ is the 2's complement of B. To form the 2's complement of a binary number, you can invert all the
bits and then add a 1 to the least significant 1 bit, or an easier way is to start at the right side with the
least significant "1" bit - keep that one unchanged, then invert all the bits to its left. So, for example, the
2's complement of 11 is 01. If we need more than two bits, we can say that 11 is really 011 and the 2's
complement is 101, or we could say that 11 is really 0011 and the 2's complement is 1101, etc., for
however many bits we need.

So, to find 10111/11, first find the place to set the dividend. Just as with decimal arithmetic, we take the
number of digits (bits in this case) in the dividend minus the bits in the divisor minus 2, or 5-2-2 =1, so
we enter the dividend one rod to the left of the units rod.

U
011 000010 111 000 000 000 000

DVSR DVDND

Because the divisor will not go into the first two bits of the dividend (10), we place the first quotient bit
just to the left of the dividend, as usual in decimal arithmetic, and divide 11 into the first three bits of
the dividend (101). Then we add the 3-bit 2's complement of the divisor (101) to the first

three bits of the dividend.

q (quotient bit)
011 000 110 111 000 000 000 000
+101

011 000 120 211 000 000 000 000
q

Then clean up the carries, but do not carry into the quotient bits (these carry bits which would overflow
into the quotient bits are just dropped into the "bit bucket") :-)

q
011 000 101 011 000 000 000 000

Now again divide 11 into the next three bits and add the 2's complement

qq
011 000 111 011 000 000 000 000

+101

011 000 112 021 000 000 000 000
qq

clean up carries

qq
011 000 110 101 000 000 000 000

Again divide 11 into 101

999
011 000 111 101 000 000 000 000

+ 101

011 000 111 202 000 000 000 000
q99

clean up the carries

999
011 000 111 010 000 000 000 000

Divide 11 into 100

q99 9
011 000 111 110 000 000 000 000

+101

011 000 111 120 100 000 000 000
qq99 9

clean up the carries

qq99 9
011 000 111 100 100 000 000 000

now 11 will not divide into the next three bits (010), so the quotient bit is 0

q99 99
011 000 111 100 100 000 000 000

+000

011 000 111 100 100 000 000 000
999 99

11 goes into the next three bits (100)

q99 999
011 000 111 101 100 000 000 000

+ 101

011 000 111 101 201 000 000 000
q99 999

clean up carries

q9q9 999
011 000 111 101 001 000 000 000

now 11 will not divide into the next three bits (010), so the quotient bit is 0

4999 999 9
011 000 111 101 001 000 000 000

+000

011 000 111 101 001 000 000 000
999 999 9

11 goes into the next three bits (100)

999 999 99
011 000 111 101 011 000 000 000

+ 101

011 000 111 101 012 010 000 000
q99 999 99

clean up carries
q9q9 999 99
011000 111 101 010010 000 000
U
et cetera

Continuing, we find that the quotient is 111.101 010 101 010 101 010
or in octal, 7.5252525.....

which is, in decimal 7.6666666......

Steve Treadwell
Sept., 2011

