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The Abacus possesses besides a high respectability, arising from its great age, its 

widespread distribution, and its peculiar influence in the evolution of our modern system of 
arithmetic. In the Western lands of to-day it is used only in infant schools, and is intended 
to initiate the infant mind into the first mysteries of numbers. The child, if he ever is taught 
by its means, soon passes from this bead-counting to the slate and slate pencil. He learns 
our Indian Numerals, of which one only is at all suggestive of its meaning; and with these 
symbols he ever after makes all his calculations. In India and all over civilised Asia, 
however, the Abacus still holds its own; and in China and Japan the method of using it is 
peculiarly scientific. It seems pretty certain that its original home was India, whence it 
spread westward to Europe and eastward to China, assuming various forms, no doubt, but 
still remaining essentially the same instrument. Its decay in Europe can be traced to the 
gradual introduction and perfecting of the modern cipher system of notation, which again in 
part owes its early origin to the indications of the Abacus itself. 

The Soroban or Japanese Abacus is one of the first objects that strongly attracts the 
attention of the foreigner in Japan. He buys at some shop a few trifling articles and sums up 
the total cost in his own mind. But the tradesman deigns not to perplex himself by a process 
of mental arithmetic, however simple. He seizes his Soroban, prepares it by a tilt and a 
rattling sweep of his hand, makes a few rapid, clicking adjustments, and names the price. 
There seems to be a tradition amongst foreigners that the Soroban is called into requisition 
more especially at times when the tradesman is meditating imposition; and in many cases it 
is certain that the Western mind, with its power of mental addition, regards the manipulator 
with a slight contempt. A little experience, however, should tend to transform this contempt 
into admiration. For it may be safely asserted that even in the simplest of all arithmetical 
operations the Soroban possesses distinct advantages over the mental or figuring process. In 
a competition in simple addition between a “Lightning Calculator,” an accurate and rapid 
accountant, and an ordinary Japanese small tradesman, the Japanese with his Soroban 
would easily carry off the palm. 
 

Summary of Part I.: The Historic Aspect 
 

The Abacus, as used in China and Japan, bears, on the very face of it, evidence of a 
foreign origin. The numbers are set down on it with the larger denomination to the left, a 
result which could come from a people either speaking and writing inversely, or speaking 
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and writing directly. Historically, the home of the Abacus is in India; but it could hardly 
have been invented by the Aryan Indians, who wrote directly and spoke inversely. The 
probability is they borrowed it from Semitic peoples, who were the traders of the ancient 
world; and these may have invented it, or, as is perhaps more probable, received it from a 
direct-speaking, direct-writing race, such as we know the highly cultured Accadians to have 
been. 

In early times the Abacus, as being an evolution from the natural Abacus—the 
human hand—pursued a course of development entirely different from that of the graphic 
representation of numbers. This latter we can trace through four stages—the Pictorial, the 
Symbolic, the Decimal, and the Cipher. The Pictorial we find in the Egyptian hieroglyphics, 
the Accadian Cuneiform, and the technical Chinese of mathematical treatises; the Symbolic 
in the numerous methods which grew up with the development of alphabets and syllabaries; 
and the Decimal in the simplifications of these, which live to-day in the Chinese and 
Tamilic systems. Once the Decimal stage was reached, its general similarity to the Abacus 
indications suggested bringing them into still closer correspondence. 

This advance seems to have taken place amongst the Aryan Indians, who, along 
with the Aryans of the West, very soon discarded the Abacus for the more convenient 
Cipher notation. With the Chinese, Tamils and Malayalams of South India, no advance was 
made in this direction; the reason being simply that the Abacus better suited their 
numeration. These peoples speak directly, so that their nomenclature fits in perfectly with 
the Abacus indications, and makes its manipulation more rapid and certain than calculation 
by ciphering. An Aryan Indian with his inverse speaking could never work the Abacus with 
the same facility as a Japanese unless he worked from right to left—a mode of procedure 
quite foreign to his nature. It is not so foreign to Chinese and Japanese, however, to work 
from left to right, as each individual character is formed in this way. It may be safely 
concluded that only amongst a people who used the direct mode of naming numbers, or 
who with the inverse mode of naming preferred the inverse mode of manipulating, could 
the Abacus in the form in which it was evolved ever attain the beauty of action of the 
Japanese Soroban. To the discussion of its peculiar merits we now proceed. We shall 
employ throughout the Japanese name, which it should be noted is simply a 
mispronunciation of the Chinese name—Swanpan. 
 

PART II.: THE SCIENTIFIC ASPECT 
 

The Soroban may be defined as an arrangement of movable beads, which slip along 
fixed rods and indicate by their configuration some definite numerical quantity. Its most 
familiar form is as follows. A shallow rectangular box or framework is divided 
longitudinally by a narrow ridge into two compartments, of which one is roughly some 
three or four times larger than the other. Cylindrical rods placed at equal intervals apart 
pass through the ridge near its upper edge, and are fixed firmly into the bounding sides of 
the framework. On these rods the counters are “beaded.” The size of the counters 
determines the interval between the rods, the number of which will of course vary with the 
length of the framework. Each counter (Japanese tama, or ball) is radially symmetrical with 
respect to its rod, on which it slides easily. Looked at from in front of the box, the form in 
perspective is that of a rhombus, the rod passing through the blunt angles. This double cone 
form makes manipulation rapid, the finger easily catching the ridge-like girth of the tama. 
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On each rod there are six (sometimes seven) tama. Five of these slide on the longer 
segment of the rod, the remaining one (or two) on the shorter. When the tama on any  
 
 
 
 
 
 
 
 
segment of a rod are set in close contact, a part of the rod is left bare. The length of this 
bare portion is determined by a double consideration. It must be long enough to be clearly 
visible, and yet not so long as to make the action of the fingers irksome by reason of 
excessive stretching. 

When a Soroban is lifted indiscriminately, the counters will take some irregular 
configuration upon their rods, being limited in their motions by the bounding walls and the 
dividing ridge. To prepare it for use, the framework is tilted slightly with the smaller 
compartment uppermost, so that each set of five counters slips down to the bounding wall 
end of its rod and each single counter1 on its short rod slips down upon the upper surface of 
the dividing ridge. The framework is then gently adjusted till all the rods become horizontal, 
so that if any counter is shifted it will have no tendency to move back to its former position. 
By a sweep of the finger-tips along the surfaces of the single counters, these are driven 
from their contact with the dividing ridge to the other extremities of the rods. In this 
configuration, in which the counters are all as far away as possible from the dividing ridge, 
the Soroban is prepared for action. The number represented is zero. This position is shown 
in fig. 1. 

Let now any first counter of a set of five be moved till it is stopped by the ridge, as 
shown in the first diagram of fig. 2. This will represent 1, 10, 100, 1000, etc., as may be 
desired. Let it represent 1, then a second moved up will give us 2, a third 3, a fourth 4. This 
last is shown in the second diagram of fig. 2. The last moved up will of course give 5; but 
this number is also given by pushing back the five counters to their zero position and 
bringing down the corresponding single counter to the ridge. This is shown in the last 
diagram of fig. 2. 
 
 

                                                 
1 We shall henceforth only speak of one counter as being on the short rod. The two counters, although 
facilitating somewhat certain operations in division, are not really necessary, and their use is exceptional. 
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Leaving this single one in position, we get 6 by pushing up 1, 7 by pushing up 2, 
and so on till 9 is reached, as shown in fig. 3. The number 10 is then represented either by 
moving up the last counter, or more usually by clearing the rod of all its counters and 
moving one up on the next rod to the left, as shown also in fig. 3. 

 
 
 
 
 

The mode of representing any number is thus obvious, being simply a mechanical 
model of our cipher system. Each rod corresponds to a definite figure “place” (Japanese 
Kurai) or power of ten. One being first chosen as the unit, the next to the left is the “tens,” 
the next the “hundreds,” the next the “thousands,” and so on; while the successive rods to 
the right will represent the successive decimal places—tenths, hundredths, thousandths, etc. 
When the counters are as far as possible from the dividing ridge they have no value; when 
they are pushed as near the ridge as possible they have values as already indicated. The 
single counter when pushed down upon the ridge has five times the value of any other 
counter upon that rod. In fig. 4 the number 3085.274 is shown. The mark V is placed over 
the “units” rod. 
 
 

 
 
 
 
 
 
The operations of addition and subtraction are self-evident. Thus, let it be required 

to add to this number 352.069. On the “hundreds” rod push up 3; and proceed throughout 
whenever it can be done this way. On the “tens” rod, however, where only two counters are 
left, it is impossible to push up 5. But since 50=100-50, the addition is effected by pushing 
up one counter on the “hundreds” and removing 5 from the “tens” rod. This gives of course 
4 on the “hundreds” rod and leaves 3 on the “tens.” Then push up 2 on the “units” rod; then 
1 on the “tenths” rod with a simultaneous removal of 4 from the “hundredths” rod, since 
10-6=4; then 1 on the “hundredths” rod with a simultaneous removal of 1 from the 
“thousandths” rod. The final result 3437.343 is given in fig. 5. 
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Subtraction is executed in a similar manner. It will be noticed that these operations 
involve no mental labour beyond that of remembering the complementary number, that is, 
the number which with the given number makes up 10. A glance at the configuration on 
any rod is sufficient to show if the addition (or subtraction) of a named number can be 
effected on it; and if this cannot be, it is necessary simply to add (or subtract) one to (or 
from) the next higher place and subtract (or add) the complementary number from (or to) 
the place in question. In first experimenting with the Soroban, an operator who is 
accustomed only to our Western modes of figuring is apt to add mentally, and then set 
down the result on the instrument. Such a mode is inferior of course to the ordinary figuring 
method, being liable to error, inasmuch as the number that is being added is not visible to 
the eye at any time, and the number that it is being added to disappears in the operation. But 
if anyone will take the trouble to dispossess himself of his Western methods and work in 
the manner indicated, he will find Soroban addition and subtraction both more rapid and 
more certain, because attended by less mental exertion, than in figuring. The one seeming 
disadvantage in the Soroban is that the final result of each step alone appears, so that if any 
error is made, the whole operation must be carried through from the beginning again. 
Almost all writers on China or Japan, who have noticed the instrument, bring this forward 
as a serious disadvantage. But such a conclusion is a hasty one, and shows the writer to 
possess but small acquaintance with Soroban methods, and little regard to the true aim of 
calculation. For after all it is the result we wish; and if an error has been made, repetition is 
necessary both with Soroban and ciphering. The mean position of an accidental error is of 
course half-way through; and this would tell in favour of the ciphering system. But, on the 
other hand, the Soroban is, on the average, much more rapid than ciphering, and less liable 
to error. Only a lengthened series of comparative experiments could establish whether there 
is any real disadvantage at all. 
 

MULTIPLICATION 
 

Multiplication on the Soroban differs but slightly from our own methods, being 
effected by means of a Multiplication Table—ku ku gō sū,2 literally, nine-nine combining 
number. Two peculiarities distinguish this table from ours. First, there is a complete lack of 
interpolated words like our “times,” the multiplier, multiplicand, and product being 
mentioned in unbroken succession; and second, the multiplier, that is the first-named 
number, is always the smaller. Thus the multiplication table for six runs: 

ichi roku roku 
ni roku jū ni 
san roku jū hachi 
shi roku ni jū shi 
go roku san jū 
roku roku san jū roku 
roku shichi shi jū ni 
roku hachi shi jū hachi 
roku ku go jū shi 

 

2 Generally called simply ku ku. 
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It is unnecessary to go to 12 as we do. Knowledge of a multiplication table for any 
number higher than 9 would retard Soroban manipulation. We British at least are often 
compelled to learn up to 12 because of our monetary system; and it is often serviceable to 
know the table for 16. One is early struck by the inability of most Japanese students to 
multiply by 12 or even 11 in one line. 

In multiplying two numbers together on the Soroban, the operator sets the two 
numbers somewhat apart on the instrument, the multiplier being to the left, the multiplicand 
to the right. There must be left to the right of the multiplicand a sufficient number of empty 
rods, a number at least equal to the number of places in the multiplier. The operation is 
essentially the same as ours; only, instead of multiplying the multiplicand by each figure of 
the multiplier as we do, the Japanese multiplies the multiplier by each figure of the 
multiplicand. As the operation goes on the multiplicand gradually disappears, so that finally 
only the multiplier and product are left on the board. An example will render the method 
clear. Let it be required to multiply 4173 by 928. Set these on the Soroban, the multiplier 
anywhere to the left, and 3 empty rods at least to the right of the multiplicand. 
Henceforward in the diagrams we shall represent visually only the counters which happen 
to be in use. 

 
 
 
 
 
 

Multiply 8 by 3 and set 24 on the Soroban so that the 4 lies just as many places to 
the right of the multiplicand 3 as there are figures in the multiplier. This 4 is of course in 
the “units” place of the product; and we shall continue to name the other places accordingly. 
Next multiply the 2 by 3, and add the product 6 to the “tens” rod. This gives us the result so 
far 84. Lastly, multiply 9 by 3. This requires 7 to be added to the “hundreds’ rod, and 2 to 
the “thousands” rod. But before this latter operation can be done, the “thousands” rod must 
be cleared of its multiplicand 3, which having completely served its purpose may easily be 
removed, and indeed is better away. Since 3 is to be removed and 2 added, it is sufficient to 
remove 1 and leave 2. The result so far is shown in fig. 7. 

 
 
 
 
 
 
 
Now proceed to multiply with the next figure of the multiplicand, 7, namely:—7 x 8 

= 56, of which 5 is to be added to the “hundreds,” and 6 to the “tens” rod; 7 x 2 = 14, that is, 
1 to the “thousands,” 4 to the “hundreds”; 7 x 9 = 63, that is, leave 6 on the “ten thousands” 
rod by taking off 1 from the 7 and add 3 to the thousands. The result of this operation is 
given in fig. 8 
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The operations with 1 and 4 are similarly carried out, care being taken to add the 

numbers which make up each several product in their proper places, and to suppress the 
multiplicand figure at the final operation with the same. The final result is given in fig. 9. 

 
 
 
 
 
 
 
 
It will be noticed that in all addition and subtraction processes the number is added 

to or taken from the rod rather than from the number on the rod. The eye can tell at a glance 
if this operation can be effected on the rod in question, or if the next rod to the left has to be 
called into play. Mental labour is thus reduced to a minimum. The operator hears or utters a 
certain sound, which means one of two operations. A glance shows which of these it must 
be; and the fingers execute a certain mechanical movement which accompanies the sound 
of the words as naturally as the fingers of a pianist obey the graphic commands of a Sonata. 

We see then how well fitted for Soroban use is the Chinese and Japanese 
nomenclature of the numerals; and how ill adapted all such systems must be which say 
sixteen and five-and-twenty or even sixteen and twenty-five instead of “teen-six” and 
twenty-five. 
 
 

DIVISION 
 

Division on the Soroban, although essentially the same as our own Long Division, is 
in many aspects peculiar and almost fascinating. The art of it is based upon a Division 
Table, called the ku ki hō, or Nine Returning Method, which is learned off by heart. This 
we give in full, with an accompanying translation as literal as possible. 
 
 

Division Table for Ichi (one). 
ichi is shin ga in jū one one gives one ten 
   “  ni   “    “   ni “ one two    “    two tens 
   “  san “    “   san “    “  three  “    three  “ 

and so on to 
ichi ku shin ga ku jū one nine gives nine <tens> 
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Division Table for Ni (two). 
ni ichi ten saku no go two one replace by five 
 “  ni shin ga in jū   “   two gives one ten 
 “  shi  “     “  ni jū   “   four   “     two tens 
 “  roku “   “ san jū   “   six     “     three “ 
 “  has “     “ shi jū   “   eight  “     four  “ 

 
This table could well stop at “ni ni shin ga in jū,” since the higher ones are simply 

combinations of the first two. This is recognised by the absence of the “two five” statement. 
 

Division Table for San (three). 
san ichi san jū no ichi three one thirty-one 
  “   ni roku   “  “   ni    “    two sixty-two 
  “   san shin ga in jū    “    three gives one ten 

 
The rest is obvious, being indeed but a repetition of the first three 

statements. 
 

Division Table for Shi (four). 
shi ichi ni jū no ni four one twenty-two 
 “   ni ten saku no go   “    two replace by five 
 “   san shichi jū no ni   “    three seventy-two 
 “   shi shin ga in jū   “    four gives one ten 

 
Division Table for Go (five). 

go ichi ka no ichi five one add one 
 “   ni    “   “   ni   “   two   “   two 
 “   san  “   “   san   “   three “   three 
 “   shi   “   “   shi   “   four   “   four 
 “   go shin ga in jū   “   five gives one ten 

 
Division Table for Roku (six). 

roku ichi ka ka no shi six one below add four 
   “    ni san jū no ni  “   two thirty-two 
   “    san ten saku no go  “   three replace by five 
   “    shi roku jū no ni  “   four sixty-four 
   “    go hachi jū no ni  “   five eighty-two 
   “    roku shin ga in jū  “   six gives one ten 

 
Division Table for Shichi (seven). 

shichi ichi ka ka no san seven one below add three 
    “     ni    “   “   “   roku     “     two    “       “    six 
    “     san shi jū no ni     “     three forty-two 
    “     shi go jū no go     “     four fifty-five 
    “     go shichi jū no ichi     “     five seventy-one 
    “     roku hachi jū no shi     “     six eighty-four 
    “     shichi shin ga in jū     “     seven gives one ten 
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Division Table for Hachi (eight). 

hachi ichi ka ka no ni eight one below add two 
    “    ni     “  “    “  shi     “   two     “       “   four 
    “    san   “  “    “  roku     “   three   “       “   six 
    “    shi ten saku no go     “   four replace by five 
    “    go roku jū no ni     “   five sixty-two 
    “    roku shichi jū no shi     “   six seventy-four 
    “    shichi hachi jū no roku     “   seven eighty-six 
    “    hachi shin ga in jū     “   eight gives one ten 

 
Division Table for Ku (nine). 

ku ichi ka ka no ichi nine one below add one 
 “   ni    “   “   “   ni    “    two     “       “   two 
 “   san  “   “   “   san    “    three   “       “   three 

and so on to 
ku hachi ka ka no hachi nine eight below add eight 
“ ku shin ga in jū “ nine gives one ten 

 
[In practice some of these phrases are contracted, such as nitchin in jū instead of ni 

ni shin ga in jū, roku chin in jū for roku roku shin ga in jū, and the like. The two words ka 
ka are run into one, kakka, the double k being strongly pronounced as in Italian. (Added, 
1914.—C. G. K.)] 

It will be noticed that the essential parts of the division tables take no account of the 
division of a number higher than the divisor. Hence in division, the larger number is named 
first; whereas in multiplication, as we saw above, the small number is named first. Thus the 
Japanese gets rid of such interpolated words as “times” and “into” or “out of,” which are 
necessary parts of our multiplication and division methods. 

In order clearly to understand this table, we must bear in mind that division is 
always at least a partial transformation from the denary scale to the scale of notation of 
which the divisor is the base. The adoption of the denary or decimal scale by all civilized 
notation is due entirely to the fact that man has ten fingers. There is no other peculiar charm 
about it; in some respects the duodenary scale would certainly be superior. As a simple 
example let us divide nine by seven; we get of course once and two over. This means that 
the magnitude which is represented by 9 in the denary scale is represented by 12 in the 
septenary scale. In this case the transformation is complete. We may test the accuracy of 
our work by writing down the successive numbers in the two scales. 

 
Denary 1 2 3 4 5 6 7 8 9 
Septenary 1 2 3 4 5 6 10 11 12 

 
Now let us work out the problem on the Soroban. Set down the number 9 with 7 a 

little to the left. The division table for seven takes no account whatever of the number nine; 
but it says “shichi shichi shin ga in jū,” or, as it might be paraphrased, “seven seven gives 
one ten”—where “ten” signifies not the number but the rod. As the operator repeats this 
formula, he removes 7 from the nine and pushes 1 up on the next rod to the left. The 
operation is shown in diagram 1 of fig. 10. 
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Now this number, represented by 12 in the septenary scale, we cannot call twelve, 
because twelve means ten and two, whereas here we have only seven and two. Practically 
we keep the unit as in the denary scale and use the phrase two-sevenths, which really 
signifies two in the septenary scale. A more complex example will make it clearer. Let it be 
required to divide 95 by 7; in other words, how many times is 7 contained in 95. By 
ordinary processes we obtain 13 and 4 over. This 4 is in the septenary scale; but 13 is still 
in the denary scale. Hence the transformation is only partial. To complete the 
transformation into the septenary scale we must express the denary 13 as the septenary 16; 
so that finally the denary 95=septenary 164. In this septenary number the 6 means 6 sevens, 
and 1 means 1 seven-sevens; precisely as in the denary number 9 means from its position 9 
tens. Practically, of course, we keep the quotient in the denary scale and say 13 and 4-
sevenths. Now perform this on the Soroban. First as before, we remove 7 from the 9 and 
move 1 up on the next rod to the left. The Soroban now reads 125, as shown in diagram 2 
of fig. 11. 
 
 
 
 
 

 
 
 
 
We have now to divide 25 by 7. The Soroban manipulator, however, does not look 

so far ahead, but deals simply with the 20, or, what is the same thing, the 2 on the “tens” 
rod. His division table says “Shichi ni ka ka no roku,” or, as we may paraphrase it, “Seven 
out of two, add six below,” which implies that the 2 is to be left as it is and 6 added to the 
next rod, to the right. (This is precisely the equivalent of seven out of twenty, twice and 
six.) Now it is evident at a glance that we cannot add 6 to the next rod, which has already 5 
on it. But, bearing in mind that we are still dividing by seven, we remove seven from the 
overfilled rod and push one up on the “tens” rod. Hence the operator is to add one to the 
“tens” rod, remove seven from, and add six to the “units” rod; or simply add one to the 
“tens” rod and remove one from the “units” (1=7 - 6). The general rule is obvious. If the 
remainder number to be added to any rod equals or exceeds the number of unused counters 
on that rod, then one counter is pushed up on the rod immediately to the left, and from the 
first-named rod is subtracted that number which with the remainder makes up the divisor. 
Hence the final result stands as is shown in diagram 3 of fig. 11, where 4 appears as the 
remainder. 
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As another example let us divide 427,032 by 8. We may represent the operations 
symbolically thus, naming the successive results by a, b, c, d, e, f, and drawing a bar to 
show how far the operation has advanced. The translation of the Japanese verbal 
accompaniment to these operations is given below: 

(8) 4 2 7 0 3 2 
(a) 5 2 7 0 3 2 
(b) 5 3 3 0 3 2 
(c) 5 3 3 6 3 2 
(d) 5 3 3 7 7 2 
(e) 5 3 3 7 8 8 
(f) 5 3 3 7 9  

(a) Eight four, replace by 5. 
(b) Eight two, below add 4 (which being impossible means add 103

 take off 4). 
(c) Eight three, below add 6. 
(d) Eight six, seventy-four. 
(e) Eight seven, eighty-six. 
(f) Eight eight, gives one ten. 

 
The chief advantage of the Soroban over ciphering lies in the absence of all mental 

labour such as is necessarily involved in the “carrying” of the remainder to the next digit. 
Once the Division Table is mastered and the fingers play obediently to the sound, the whole 
operation becomes perfectly mechanical. The only disadvantage is the often mentioned one, 
that the dividend disappears in the process. But this, as we have seen, is a small thing after 
all. 

We shall now go through a problem in long division; and here the process is very 
similar to our own. Indeed, it can hardly escape notice that short division on the Soroban is 
essentially the same process as long division with us. 

Let it be required to divide 703,314 by 738. Here again we shall symbolically 
represent the successive operations, so far as is necessary for clearness. 

(738)  7 0 3 3 1 4 
(a) 1 0 0 3 3 1 4 
(b)  9 7 3 3 1 4 
(c)  9 3 9 1 1 4 
(d)  9 5 4 1 1 4 
(e)  9 5 2 2 1 4 
(f)  9 5 2 8 1 4 
(g)  9 5 3 1 1 4 
(h)  9 5 3 0 0 0 

 
 

The start is made by consideration of the first figure on the left of the divisor. 
(a) Seven seven, one ten. Take account now of the next figure in the divisor, 

multiply it by the 1 already obtained in the quotient and subtract the product 
from the second place in the dividend. Clearly this is impossible. Now 

                                                 
3  This 10 is not “ten” but “eight” since for the moment we are working in the octenary scale. 
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observe that the first two figures of the line opposite a, namely 10, are really 
in the septenary scale. 

(b) Hence take 1 from 10 (not ten but really seven) and add 7 to the next lower 
rod. 

(c) Use 9 as multiplier now; subtract 9 times 30 or 270 from 733 and then 9 
times 8 or 72 from the remainder. This completes the first operation, and is 
essentially the same as the first stage in the ordinary long division method. 

(d) Start afresh as before with “seven three, forty two.” 
 

But 2 is greater that 1, the unused counter on the corresponding rod. 
Hence add one to 4 on the second rod and subtract 5 (7 – 2) from the 
third rod. 

 
(e) Use 5 as multiplier; subtract 5 times 30 from 411, and 5 times 8 from the 

remainder. 
(f) Start once again with “seven two, add six below.” 
(g) “Seven seven, gives one ten,” which means—add one to the third rod, 

subtract seven from the fourth. 
(h) Use 3 as multiplier; subtract 3 time 30 from 114, and 3 times 8 from the 

remainder. 
 

Here again in the complete absence of any mental labour lies the peculiar merit of 
the Soroban. The only operation which calls for special remark is a, in which the first figure 
of the quotient is obtained by a process singularly rapid and free from all concentration of 
mind. 

It is not necessary for rapid manipulation of the Soroban that one who is 
accustomed to Western modes of thought should use the Japanese Division Table. We may 
substitute our own peculiar method of dividing. There are, however, two of the Japanese 
tables which are singularly beautiful in their construction, the one for 5 and the one for 9. 
For example, let us divide 240,635 by 5. The table says “five two, add two,” which is 
exactly the equivalent ultimately of our statement that “five into twenty give four.” We may 
show the process symbolically thus:— 
 

(5) 2 4 0 6 3 5 
 4 4 0 6 3 5 
 4 8 0 6 3 5 
 4 8 1 2 3 5 
 4 8 1 2 6 5 
 4 8 1 2 7  

 
The process simply amounts to multiplying by 2 and dividing by 10; but with the 

Soroban it is peculiarly rapid. 
Again let us divide the same number by 9. The table says “nine two add two 

below,” which is identical in result with “nines in twenty twice and two,” and so with the 
others. Symbolically we have:— 

 
2 4 0 6 3 5 
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2 6 0 6 3 5 
2 6 6 6 3 5 
2 6 6    

 
Here we cannot add 6 below; but instead we take off 3 (9 – 6) and put on one above 

as usual. Hence we obtain:— 
2 6 7 3 3 5 
2 6 7 3 6 5 
2 6 7 3 7 2 

The 2 is the remainder of course. 
 
 

EXTRACTION OF SQUARE ROOT (Kai hei hō) 
 

This requires, as in the ordinary ciphering process, a knowledge of the squares of 
the nine digits; but its peculiarity lies in the use of another table of half-squares, Han ku ku. 
In both the Soroban and ciphering processes, the basis is the algebraic truth that the square 
of a binomial is the sum of the squares of the two components together with twice their 
product, or the corresponding geometrical theorem that if a straight line be divided into two 
parts, the square on the whole line is equal to the sum of the squares on the two parts 
together with twice the rectangle contained by the parts. In the arithmetical extraction of 
square root, the quantity is considered as consisting of two parts, the first part being that 
multiple of the highest power of 100 contained in the number which is a complete square. 
Thus the number 6889 is divided into 6400 and 489. But 
 

6400 + 489 = 802 + 489 
 
so that 80 is the first approximation to the value required. If we compare this with the 
binomial expression 
 

(a+b)2 = a2 +2ab + b2 
= a2 + (2a + b)b 

 
we see that our next operation must be to form the divisor 2a+b, that is, in the numerical 
case 160+ a quantity still unknown, but this quantity still unknown is also the quotient of 
the remainder 489 by the divisor. The process is to use 160 as a trial divisor, so as to get an 
idea what the unknown quantity may be. In this case we obtain 3, which added to 160 gives 
163; and this multiplied by 3 gives 489. Hence the square root of 6889 is 83. Now in this 
mode of procedure a divisor quite distinct from the final result has to be formed. In the 
Soroban, however, whose peculiar feature in all operations is the disappearance of the 
various successive operations as the result is evolved, a distinct divisor does not appear. 
Thus, by an obvious transformation, we have 
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Comparing this as before with 
68892 = 802 + 489 

 
we see, that by halving the remainder 489, we may employ a itself, that is 80, as our trial 
divisor. In completing this step we must take ½b2 instead of b2; and hence the importance in 
the Soroban method of the table of half squares. The simplicity of the method will be 
recognised from the following example. It is required to extract the square root of 418,609. 
As in ordinary ciphering, tick off the number in pairs, beginning at the right hand. Then 
clearly 600 is the first approximation to the value of the square root, or 6 is the first figure 
in the answer. Move up 6 on a convenient rod somewhat to the left. The successive 
operations are given symbolically below, the description following as in the previous 
examples. 

 6 4 1 8 6 0 9 
(a)   5 8 6 0 9 
(b)   2 9 3 0 4.5 
(c) 64   5 3 0 4.5 
(d)    4 5 0 4.5 
(e)     3 0 4.5 
(f)      2 4.5 
(g) 647      0 

 
 
 

(a) Subtract 62 or 36 from 41, leaving 5. 
(b) Halve the whole remainder 58,609. 
(c) Use 6 as trial divisor of 29. This gives 4. Subtract 4 x 6 or 24 from 29, 

leaving 5, and consider 64 as the full divisor. 
(d) Subtract half the square of 4 from 53. This completes the second stage. 
(e) Start with 6 again as trial divisor of 45, or more accurately 600 as trial 

divisor of 4504.5. This gives 7. Subtract 7 x 6 or 42 from 45. 
(f) Subtract 7 times 40 from the remainder 304.5. 
(g) Subtract half the square of 7 from the remainder 24.5.  647 thus appears as 

the last divisor and, as there is no remainder, it is the square root of 418,609. 
The whole process may easily be proved by considering the expansion of the square 

of a polynomial. Take for example, the quadrinomial (a + b + c + d) 
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EXTRACTION OF CUBE ROOT (Kai ryu hō) 

 
The difference in the Soroban and ciphering processes arises from the same cause as 

in the case of square root. That is, instead of preparing a divisor, the Soroban worker 
prepares the dividend. The much greater complication in the case of the cube root 
necessitates an undoing of the processes of preparation at each successive stage—a mode of  
operation which was obviated in the case of square root by the use of the table of half-
squares. The analogous table of “third cubes” would be excessively awkward in operating 
with, because of the decimal non-finiteness of the fractions of three. The operator is 
expected to know by heart the table of cubes, or Sai jō ku ku. As in the ordinary ciphering 
method, the Soroban method depends upon the expression for the cube of a binomial. 
Consider, for example, the number 12,167. The first operation is to tick off in threes, that is 
in groups of ten-cubed. 
Now 12 lies between the cubes of 2 and 3. Hence 20 is the first approximation to the cube 
root of 12,167. We have 

12,167 = 8000 + 4167 
  = 203 + 4167 

 
Now comparing this with the expression 
 

(a + b)3 = a3 +3a2b + 3ab2 + b3 
    = a3 + (3a2 + 3ab + b2) b 

 
we see that we must form a divisor whose most important part is 3a2, that is, 3 x 400 or 
1200. Using 1200 as trial divisor of 4167, we get 3, which corresponds to the b in the 
general expression. We now form the complete divisor by adding to 1200 the expression 
 

3ab + b² = 3 x 20 x 3 + 3 x 3 
          = 180 + 9 
          = 189 
 
Thus we find as final divisor 1389, which multiplied by 3, gives 4167; and hence 23 is the 
answer required. 

The method on the Soroban depends upon the following transformation of the 
binomial expression 

 
 
Here, by dividing the remainder (after subtracting the cube of the first member) by that 
member and by 3, we obtain an expression whose principal part is ab, that is, the product of 
the first member and the as yet unknown second member. Hence, using a as trial divisor of 
the first figures of the prepared dividend we get b. In the process the a or first member of 
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the answer is set down in such a position relatively to the original expression that the b 
when it is finally evolved falls into its proper place succeeding a. We now subtract b2 from 
its proper place in the remainder; and the final remainder obtained is b3/3a. Operating upon 
this by multiplying first by 3 and then by a, that is, by an exact reversal of the original 
process of preparation, we get b3 left. We shall illustrate the process by extracting the root 
of 12,167 according to the Soroban method. The number is first ticked off by threes in the 
usual way, and the first number of the answer is set down on the first rod to the left of the 
highest triplet. In this particular example there are only two significant figures in the 
highest triplet, so that the 2 is set down two rods to the left of the first figure in the original 
number. The successive steps are as follows; and as position is of supreme importance in 
this operation, we shall symbolise the Soroban rods by ruled columns:— 

a. 2  1 2 1 6 7 
b. 2   4 1 6 7 
c. 2  2 0 8 3 1 
d. 2  6 9 4 3 2 
e. 2 3 0 9 4 3 2 
f. 2 3   4 3 2 
g. 2 3   1 3 1 
h. 2 3    2 7 
i. 2 3    0 0 

 
(a) Tick off into powers of 103 and consider the significant figures in the highest 

triplet, in this case 12. Two rods to the left set down 2, the highest integer 
whose cube (8) is less than 12. 

(b) Subtract 23 or 8 from 12; or, to be more precise, subtract 203 or 8000 from 
the original number. 

(c) Divide the remainder by the 2, which is the first found member of the 
answer. This, in accordance with the Soroban method of division, requires 
the first figure of quotient to be set down one rod to the left. Also it must be 
noted that the last unit is a fractional remainder and means really one-half. 

(d) Divide by 3, carrying out the process until the last rod with the ½ remainder 
is reached. To this unit the unit of the fraction one-third which appears as a 
final remainder is added; so that the 2 on the last rod really means one-half 
and one-third. The division by 3 might be stopped at the preceding rod, so 
that instead of 69,432 we should have 69,411, in which the first unit means 
⅓ and the second ½. There is greater chance of confusion, however, in this 
method than in the one shown, as will be seen when we come to the later 
stages. 

(e) Divide by 2, but stop when the first figure in the quotient, in this case 3, is 
obtained. 

(f) Continue this operation of division, regarding the newly obtained 3 as part of 
the divisor; or, in other words, subtract 32 or 9 from the next place to the 
right. We have now left a remainder represented by 43 and ½ and ⅓. This 
remainder is of the form b3/a3; and to bring it back to a workable form we 
must multiply it by 3a. We must be careful, however, to do this so as to take 
proper account of the peculiar mixed fraction represented by 2 on the last 
rod to the right. The next two stages effect this. 
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(g) Multiply by 3, beginning however, at the second last rod, and thus undoing 
the operation d. Multiplication on the Soroban is accompanied by 
displacement to the right. Hence the product 3 x 43 or 129 has its last right-
hand figure added to the rod containing the mixed remainder 2; and the final 
result of this operation gives 131, in which the last unit means as before one-
half. 

(h) Multiply by 2, beginning with the second last rod, and thus undoing the 
effect of operation c. The product 2 x 13 or 26 is added to the 1, and the 27 
appears as the final expression. 

(i) Subtract 33 or 27, and the remainder is zero. 
 

Had we stopped in the operation d at an earlier point as suggested, we should have 
had to modify the reverse operation g. Thus, only the 4 of 411 would need to be multiplied 
by 3, giving of course 12 to be added to the first of the two units. The final result would 
have been of course 131, as already obtained. 

The processes for extracting square root and cube root, on the other hand, imply a 
knowledge of mechanics much wider than the Abacus itself could ever teach. Square Root 
might perhaps have been evolved as a purely arithmetical operation on the Abacus; but 
Cube Root certainly could not. It seems more reasonable to suppose that both processes 
were deduced by some more general mathematical method, either algebraic or geometric. 
 
 
 
 
 
 
 
 
 
 
The geometrical aspect is indeed most instructive. Consider, for example, the square ABCD, 
from which has been subtracted the small square X, whose side x is known in finite terms. 
The L-shaped portion measures the remainder after X has been subtracted from the large 
square. From this remainder we have to find the length y, which with x makes up the side of 
the large square. The line drawn from C to the contiguous corner of X evidently cuts the L-
shaped remainder into two halves. And each half in made up of the product of x and y and 
half the square of y. Here we have at once the suggestion of the Abacus rule for extracting 
square root. A similar consideration of the properties of the cube would lead to the Abacus 
rule for extracting the cube root. It is not probable, however, that these rules were 
discovered in this way. They are rather to be regarded as having been deduced from general 
algebraic considerations, just as our own rules are. They involve a knowledge of the 
binomial theorem, not necessarily in its complete generality, but so far at least as positive 
integers are concerned. It is known, however, that Chinese mathematicians have been 
acquainted for centuries with the binomial theorem, which they employed in the solution of 
equation of high degree. Hence it is almost certain that the Abacus rule for cube root is a 
formula deduced from the algebraic mode of solving such an equation as 
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x3 - a = 0 
 
The rule, of course, had to be formulated so as to suit the peculiar conditions of the 
arithmetic Abacus. The discussion of what might be called the algebraic Abacus or 
chessboard-like arrangement for solving equations is beyond the scope of the present paper. 

See in this connection A History of Japanese Mathematics, by David Eugene Smith 
and Yoshio Mikami (Chicago, 1914). 
 

EXHIBITS 
1. Japanese Abacus. Lent by Cargill G. Knott, D.Sc. 
2. Chinese Abacus. Lent by Major W. F. Harvey, I.M.S. 
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